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Abstract. The ac response of type-II superconductors to an alternating magnetic field is
numerically studied on the basis of the time-dependent Ginzburg–Landau equations. We examine
the temperature dependence of the ac susceptibility associated with a small ac magnetic field
in the absence of a bias dc field. It is shown that with increasing temperature the in-phase
component of the fundamental susceptibility exhibits a step-like change from a negative constant
value to zero, while the out-of-phase component of the fundamental susceptibility and the third-
harmonic component have a peak at a certain temperature near the superconducting transition
temperature. These results are in qualitative agreement with those of recent experiments on
high-Tc superconductors.

Magnetization measurements using alternating fields have been widely employed in the
study of type-II superconductors [1]. This is because in these experiments the effective
time window can be easily changed by varying the frequency of the applied ac field.
Thus, the study of the ac magnetic response of type-II superconductors provides direct
information on flux dynamics in these materials. Recently, several authors have measured
the ac susceptibility in high-Tc materials as functions of various physical parameters such
as temperature, and the frequency and amplitude of the applied ac field [2–5].

Various models have been proposed to explain experimental data for the ac susceptibility
of type-II superconductors, and especially of high-Tc materials [6–12]. Although these
models have partially succeeded in explaining the ac magnetic response of type-II
superconductors, they are at rather macroscopic and/or phenomenological levels, and thus
are still incomplete. In this letter, to complement the previous study, we attack the above
problem by using a different type of approach, that is, the numerical approach of the
time-dependent Ginzburg–Landau (TDGL) equations [13, 14]. The main advantage offered
by this computer simulation study is the ability to visualize the dynamical processes of
magnetization and thus to directly obtain information on the dynamics of the magnetic flux
structure without making any of thead hocelectrodynamical assumptions used in previous
models (e.g., the field dependence of the critical current in the critical state model). Here,
performing numerical calculation of the TDGL equations, we examine the ac magnetic
response of type-II superconductors to a small alternating magnetic field in the absence
of the steady bias field. In particular, we discuss the temperature dependence of the ac
susceptibility with the amplitude and frequency of the ac field being fixed.

The TDGL equations are composed of two partial differential ones for the complex
order parameterψ(r, t) and the vector potentialA(r, t) at time t and positionr [13–15]:

h̄2
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∂
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ψ = − δF

δψ∗ + f (r, t) (1)
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Figure 1. Time variation of the magnetizationM(t) for T/Tc = 0.8, 0.91, 0.93, and 0.97.
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with the covariant time derivative(∂/∂t + ieφ/h̄) and a scalar potentialφ, whereψ∗

denotes the complex conjugate ofψ . These equations are invariant under the local U(1)
gauge transformation forψ,A, andφ. Here,D andσ are the diffusion constant and the
conductivity, associated with the normal phase, respectively, and they have the relation [16]

σ = c2ξ2

48πλ2

1

D
(3)

with the coherence lengthξ and the magnetic penetration depthλ. The last term of the
r.h.s. of equation (1),f (r, t), denotes the thermal noise with zero mean, i.e.〈〈f 〉〉 = 0, and
the correlation

〈〈f ∗(r′, t ′)f (r, t)〉〉 = 12ξ−4
0 t0kBT

(
Hc(0)2

8π

)−1

δ(r′ − r)δ(t ′ − t) (4)
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Figure 2. Temperature dependences ofχ ′
1, χ

′′
1 , andV3.

where〈〈· · ·〉〉 denotes the ensemble average,ξ0 is the coherence length at zero temperature,
andt0 ≡ πh̄/(96kBTc) with the superconducting transition temperatureTc at zero field. The
Ginzburg–Landau (GL) free-energy functionalF [ψ,A] is given by

F =
∫

dr

[
1

2m
|Dψ |2 + α(T )|ψ |2 + β

2
|ψ |4 + 1

8π
(∇ × A)2

]
(5)

with the covariant derivativeD ≡ −i∇ − (e/c)A and the local magnetic flux density
b(r, t) ≡ ∇ × A. Under the assumption thatα(T ) = α(0)(T /Tc − 1), and α(0) and
β are positive constants in equation (5), the upper and lower critical fields are given by
Hc2(T )/Hc2(0) = 1 − T/Tc andHc1(T )/Hc2(0) = (ln κ/(2κ2))(1 − T/Tc), respectively,
with the GL parameterκ. The other notation is conventional [16]. These equations are
supplemented with boundary conditions,Dψ |n = 0 and∇ × A|s = He, where the index
n denotes the normal direction on the sample boundary and the index s denotes the sample
boundary with an applied magnetic fieldHe.

We here consider a type-II superconductor in thex–y plane with a sizeLx × Ly . The
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Figure 3. See facing page.
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Figure 3. (Continued) Time variations of profiles of thez-component of the local magnetic flux
density,bz, in units ofHc2(0) along thex-axis aty = 32ξ0 for T/Tc = 0.8 (a), 0.91 (b), and
0.97 (c). Time goes from the left-hand column to the right-hand one for one cycle of the ac
field.

sample is assumed to be infinite in thez-direction, and the problem is reduced to two
dimensions neglecting all derivatives alongz. The external ac magnetic field is applied to
the sample asHe = H(t)ẑ with H(t) = Hac sinωt whereHac andω denote the amplitude
and angular frequency of the ac field, respectively, andẑ is the unit vector along thez-axis.
In actual simulations the TDGL equations are transformed into the dimensionless discretized
equations on a two-dimensional lattice by introducing link variables for the vector potential
and the gauge fixing such that the scalar potential is set to zero. Since these procedures are
the same as those in references [13, 14], we will not discuss the numerical procedures any
further.

In the following simulations, we setLx = Ly = 64ξ0 andκ = 2. The amplitude and
frequency of the ac field are fixed to beHac = 0.05Hc2(0) andωt0/2π = 0.25× 10−3 (that
is, the period of the ac field is 4000t0), respectively. We also take the lattice spacing and
time step for numerical calculations to be 0.5ξ0 and 0.0125t0, respectively. These values
are chosen for the computational reason of obtaining efficient results within our computer
availability. As the initial state we choose the zero-field-cooling state.

In figure 1 the magnetization,M(t), of the sample is plotted against time for various
values of temperature. The magnetizationM(t) is defined as 4πM(t) = 〈B〉(t) − H(t),
where the magnetic induction〈B〉(t) is obtained from the sample average of thez-
component,bz(r, t), of the local magnetic flux densityb(r, t). At T = 0.8Tc, the
magnetization is sinusoidal in nature, according to the external ac fieldHac sinωt . With
increasing temperature, the magnetization deviates from the sinusoidal character with a
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decrease of its magnitude, and simultaneously a phase-shift phenomenon occurs in thet–
M(t) curve. Further increase of temperature results in the large degree of phase shift.
Indeed, atT = 0.97Tc, the magnetization becomes almost zero at times when the applied
ac field is maximum (minimum). Note that even for no bulk pinning case, the phase-shift
phenomena take place due to the sample boundary effect, as has been discussed in our
previous work [17].

To give details of the ac magnetic response of the system, we study the ac susceptibility
defined by the Fourier transformation of the magnetizationM(t):

M(t) = Hac

∞∑
n=1

(χ ′
n sinnωt − χ ′′

n cosnωt) (6)

whereχ ′
n andχ ′′

n (n = 1, 2, . . .) denote the in-phase and out-of-phase components of the
nth-harmonic susceptibility, respectively, with thenth harmonicsVn ≡ √

χ ′2
n + χ ′′2

n . In
calculating the ac susceptibility, simulation data during the first period have been discarded
to avoid transient effects. In the present case we have numerically checked that only
odd harmonics are generated [8]. In figure 2,χ ′

1, χ
′′
1 , andV3 are plotted as functions of

temperature; they have been often measured experimentally. It is shown that with increasing
temperature,χ ′

1 exhibits a step-like change from a negative constant value(=−1/(4π)
theoretically [6]) to zero, whileχ ′′

1 initially rises from zero, goes through a maximum at
0.91Tc (called the peak temperature, denoted byTp), and then returns to a small value near
Tc. Note thatHc1(Tp) ' 0.008< Hac = 0.05< Hc2(Tp) = 0.09 for Tp = 0.91Tc in units
of Hc2(0). The third harmonicV3 is also found to have a similar temperature dependence
to χ ′′

1 with the peak temperatureTp = 0.93Tc. These results are qualitatively consistent
with those of recent experiments on high-Tc superconductors [2–5]. At present it is unclear
whether the slight difference between the peak temperature estimated fromχ ′′

1 and that from
V3 is physically meaningful or not.

Now we relate the above macroscopic behaviour of the system to the spatio-temporal
structure of the local magnetic flux. In figures 3(a)–3(c) the time evolution of the profile of
the local magnetic flux densitybz along thex-axis is shown aty = 32ξ0 for a complete cycle
of the ac field forT/Tc = 0.8 (a), 0.91 (b), and 0.97 (c), respectively. In figure 4 the time
evolution of the profile of they-component of the current density is shown along thex-axis
at y = 32ξ0 for T = 0.91Tc during one half of the period of the ac field, as well asbz. The
current density is given by(c/4π)∇×∇×A in units ofj0 ≡ cHc2(0)/(4πξ0). No definite
magnetic vortex structures are observed in figures 3(a)–3(c). It is also found that the step in
χ ′

1 is due to the transition from near-perfect screening (figure 3(a)) to complete penetration
(〈B〉(t) ' H(t)) of the ac field impinging into the whole sample (figure 3(c)). Moreover, we
have numerically checked that the smallest temperature at which penetrating magnetic flux
(current) reaches to the centre of the sample is 0.90Tc in the present case. Thus, the peak in
χ ′′

1 (and maybe the peak inV3) corresponds to the first penetration of the flux (current) to
the centre of the sample (figure 3(b) and figure 4). Although such an interpretation has been
already proposed by several authors [7, 9, 10], this is the first simulation study to discuss
the ac magnetic response of type-II superconductors from the point of view of the local
magnetic flux dynamics without making any of thead hocelectrodynamical assumptions
used in previous models. Finally, we remark that the magnetic relaxation phenomenon
can be seen in figure 3(b) and figure 4. Indeed, even when the external field changes
to a decreasing stage from the initial ramp-up phase, the magnetic flux near the centre
of the sample still increases for a while. An importance of this relaxation behaviour has
recently been pointed out as one of possible causes for the frequency dependence of the
ac susceptibility [3, 12]. Such magnetic relaxation effects on the ac susceptibility will be
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Figure 4. Time variations of profiles of they-component of the current density (dashed lines)
in units of j0 = cHc2(0)/(4πξ0) along thex-axis aty = 32ξ0 for T/Tc = 0.91 during one half
of the period of the ac field. Profiles ofbz are also shown for comparison, as solid lines.
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discussed elsewhere.
In conclusion, we have studied the ac magnetic response of type-II superconductors to

the alternating magnetic field on the basis of numerical calculation of the TDGL equations.
In particular, the temperature dependence of the ac susceptibility in the absence of the dc
field with the amplitude and frequency of the ac field being fixed has been discussed. We
have found a step-like change inχ ′

1, and a peak inχ ′′
1 and also in the third harmonicV3

at a certain temperature nearTc. These results are in qualitative agreement with recent
experimental data on high-Tc superconductors. Moreover, we have briefly discussed the
relationship between these macroscopic behaviours of the system and the spatio-temporal
behaviour of the local magnetic flux.

However, we should mention that there can be a big distance between simulations and
experiments. This is because there are the following faults in the present model. Firstly, in
real systems the ac response is strongly affected by pinning and thermal fluctuations, which
are not in the model. Secondly, we have neglected thez-dependence of the problem. The
present results, therefore, apply only to films, not bulk materials where the entanglement of
flux lines may be important. These points will be discussed in future work.

Nevertheless, the present approach based on computer simulations of TDGL equations
has been found to be potentially rich for throwing novel light on the problem studied here.
For instance, the present model is applicable for discussing the validity of assumptions
used in macroscopic and/or phenomenological models. Since the present study is still in a
primitive stage, detailed simulations are now under way to allow discussion of a quantitative
comparison of simulation results with theoretical results and experimental data obtained by
not only the ac method but also the Hall probe method [18]. Moreover, many interesting
problems still remain open, such as the dependence of the ac response on various physical
parameters (e.g., the amplitude and frequency of the ac field, the dc field, bulk pinning
and the sample geometry), and also the universal behaviour of the ac susceptibility. These
problems are also now under consideration.

The authors are grateful to Professor S Maekawa for a number of valuable discussions.

References

[1] For a review, see
Hein R A, Francavilla T L and Liebenberg D H (ed) 1991Magnetic Susceptibility of Superconductors and

Other Spin Systems(New York: Plenum)
[2] Ghatak S K, Mitra A and Sen D 1992Phys. Rev.B 45 951
[3] Wolfus Y, Abulafia Y, Klein L, Larkin V A, Shaulov A, Yeshurun Y, Konczykowski M and Feigel’man M

1994PhysicaC 224 213
[4] Ding S Y, Wang G Q, Yao X X, Peng H T, Peng Q Y and Zhou S H 1995Phys. Rev.B 51 9107
[5] Kumaraswamy B V, Lal R and Narlikar A V 1996 Phys. Rev.B 53 6759
[6] Bean C P 1964Rev. Mod. Phys.36 31
[7] Chen D X, Nogues J and Rao K V 1989 Cryogenics29 800
[8] Ji L, Sohn R H, Spalding G C, Lobb C J and Tinkham M 1989Phys. Rev.B 40 10 936
[9] Geshkenbein V B, Vinokur V M and Fehrenbaher R 1991Phys. Rev.B 43 3748

[10] van der Beek C J, Geshkenbein V B and Vinokur V M 1993 Phys. Rev.B 48 3393
[11] Shatz S, Shaulov A and Yeshurun Y 1993Phys. Rev.B 48 13 871
[12] Prozorov R, Shaulov A, Wolfus Y and Yeshurun Y 1995Phys. Rev.B 52 12 541
[13] For a review, see

Enomoto Y, Kato R and Maekawa S 1993Studies of High Temperature Superconductorsvol 11, ed A V
Narlikar (New York: Nova Science) p 309

[14] Fram H, Ullah S and Dorsey A T 1991 Phys. Rev. Lett.66 3067
Liu F, Mondello M and Goldenfeld N 1991Phys. Rev. Lett.66 3071



Letter to the Editor L453

Kato R, Enomoto Y and Maekawa S 1991Phys. Rev.B 44 6916; 1993Phys. Rev.B 47 8016
[15] Schmid A 1969Phys. Rev.180 527
[16] Tinkham M 1975Introduction to Superconductivity(New York: McGraw-Hill)
[17] Enomoto Y, Ishikawa Y and Maekawa S 1996PhysicaC 263 21
[18] Zeldov E, Majer D, Konczykowski M, Larkin A I, Vinokur V M, Geshkenbein V B, Chikumoto N and

Shtrikman H 1995Europhys. Lett.30 367


